ANN-based approach to model MC/DR of some fruits under solar drying

The aim of this work was to model the moisture content (MC) and drying rate (DR) using artificial neural network (ANN) methodology. Many architectures have been tested and the best topology was selected based on a trial and error method. The dataset was randomly divided into 60, 20, and 20 % for tra...

Full description

Permalink: http://skupnikatalog.nsk.hr/Record/nsk.NSK01001144962/Details
Matična publikacija: Kemija u industriji (Online)
70 (2021), 5/6 ; str. 233-242
Glavni autori: Sadadou, Ahmed (Author), Hanini, Salah, Laidi, Maamar, Rezrazi, Ahmed
Vrsta građe: e-članak
Jezik: eng
Predmet:
Online pristup: https://doi.org/10.15255/KUI.2020.050
Kemija u industriji (Online)
Hrčak
LEADER 02782naa a22004214i 4500
001 NSK01001144962
003 HR-ZaNSK
005 20221215150920.0
006 m d
007 cr||||||||||||
008 220803s2021 ci d |o |0|| ||eng
024 7 |2 doi  |a 10.15255/KUI.2020.050 
035 |a (HR-ZaNSK)001144962 
040 |a HR-ZaNSK  |b hrv  |c HR-ZaNSK  |e ppiak 
041 0 |a eng  |b hrv 
042 |a croatica 
044 |a ci  |c hr 
080 1 |a 66  |2 2011 
080 1 |a 004  |2 2011 
100 1 |a Sadadou, Ahmed  |4 aut  |9 HR-ZaNSK 
245 1 0 |a ANN-based approach to model MC/DR of some fruits under solar drying  |h [Elektronička građa] /  |c Ahmed Sadadou, Salah Hanini, Maamar Laidi, Ahmed Rezrazi. 
246 3 |a Artificial neural network -based approach 
300 |b Graf. prikazi. 
504 |a Bibliografija: 44 jed. 
504 |a Abstract ; Sažetak. 
520 |a The aim of this work was to model the moisture content (MC) and drying rate (DR) using artificial neural network (ANN) methodology. Many architectures have been tested and the best topology was selected based on a trial and error method. The dataset was randomly divided into 60, 20, and 20 % for training, test, and validation stage of the ANN model, respectively. The best topology was 10-{29-13}-2 obtained with high correlation coefficient R (%) of {99.98, 98.41} and low root mean square error RMSE (%) (0.36, 6.29) for MC and DR, respectively. The obtained ANN can be used to interpolate the MC and DR with high accuracy. 
520 |a Cilj ovog rada bio je modelirati sadržaj vlage (MC) i brzinu sušenja (DR) primjenom metodologije umjetne neuronske mreže (ANN). Testirane su mnoge arhitekture, a najbolja topologija odabrana je na temelju metode pokušaja i pogrešaka. Skup podataka podijeljen je nasumično na 60, 20 i 20 % za fazu treninga, testa i validacije ANN modela. Najbolja topologija bila je 10-{29-13}-2 dobivena visokim koeficijentom korelacije R (%) od {99,98, 98,41} i niskom srednjom kvadratnom pogreškom RMSE (%) (0,36, 6,29) za MC, odnosno DR. Dobiveni ANN model može se s velikom točnošću primijeniti za interpolaciju MC-a i DR-a. 
653 0 |a Umjetne neuronske mreže  |a Solarno sušenje  |a Voće  |a Sadržaj vlage  |a Brzina sušenja 
700 1 |a Hanini, Salah  |4 aut  |9 HR-ZaNSK 
700 1 |a Laidi, Maamar  |4 aut  |9 HR-ZaNSK 
700 1 |a Rezrazi, Ahmed  |4 aut  |9 HR-ZaNSK 
773 0 |t Kemija u industriji (Online)  |x 1334-9090  |g 70 (2021), 5/6 ; str. 233-242  |w nsk.(HR-ZaNSK)000530475 
981 |b Be2021  |b B03/21 
998 |b tino2212 
856 4 0 |u https://doi.org/10.15255/KUI.2020.050 
856 4 0 |u http://silverstripe.fkit.hr/kui/issue-archive/article/788  |y Kemija u industriji (Online) 
856 4 1 |y Digitalna.nsk.hr 
856 4 0 |u https://hrcak.srce.hr/257538  |y Hrčak