A contribution to the modelling of fouling resistance in heat exchanger-condenser by direct and inverse artificial neural network

The aim of this study was to predict the fouling resistance (FR) using the artificial neural networks (ANN) approach. An experimental database collected from the literature regarding the fouling of condenser tubes cooling seawater of a nuclear power plant was used to build the ANN model. All models...

Full description

Permalink: http://skupnikatalog.nsk.hr/Record/nsk.NSK01001144932
Matična publikacija: Kemija u industriji (Online)
70 (2021), 11/12 ; str. 639-650
Glavni autori: Benyekhlef, Ahmed (Author), Mohammedi, Brahim, Hanini, Salah, Boumahdi, Mouloud, Rezrazi, Ahmed, Laidi, Maamar
Vrsta građe: e-članak
Jezik: eng
Predmet:
Online pristup: https://doi.org/10.15255/KUI.2020.076
Kemija u industriji (Online)
Hrčak

Održavanje sustava u tijeku

Sustav je trenutačno nedostupan zbog održavanja.

Zapisi o posjedovanju i primjercima trenutačno nisu dostupni. Za više informacija kontaktirajte osoblje knjižnice ili pošaljite upit administratoru:

informacijski.centar@nsk.hr

Internet

https://doi.org/10.15255/KUI.2020.076
Kemija u industriji (Online)
Hrčak