Semantic Detection of Targeted Attacks Using DOC2VEC Embedding

The targeted attack is one of the social engineering attacks. The detection of this type of attack is considered a challenge as it depends on semantic extraction of the intent of the attacker. However, previous research has primarily relies on the Natural Language Processing or Word Embedding techni...

Full description

Permalink: http://skupnikatalog.nsk.hr/Record/nsk.NSK01001163143/Details
Matična publikacija: Journal of communications software and systems (Online)
17 (2021), 4 ; str. 334-341
Glavni autori: S. El-Rahmany, Mariam (Author), Hussein Mohamed, Ensaf, H. Haggag, Mohamed
Vrsta građe: e-članak
Jezik: eng
Online pristup: https://doi.org/10.24138/jcomss-2021-0113
Elektronička verzija članka
Elektronička verzija članka
Elektronička verzija članka
LEADER 02687naa a22003614i 4500
001 NSK01001163143
003 HR-ZaNSK
005 20230213112508.0
006 m d
007 cr||||||||||||
008 230213s2021 ci |o |0|| ||eng
024 7 |2 doi  |a 10.24138/jcomss-2021-0113 
035 |a (HR-ZaNSK)001163143 
040 |a HR-ZaNSK  |b hrv  |c HR-ZaNSK  |e ppiak 
041 0 |a eng 
042 |a croatica 
044 |a ci  |c hr 
080 1 |2 2011 
100 1 |a S. El-Rahmany, Mariam  |4 aut  |9 HR-ZaNSK 
245 1 0 |a Semantic Detection of Targeted Attacks Using DOC2VEC Embedding  |h [Elektronička građa]  |c Mariam S. El-Rahmany, Ensaf Hussein Mohamed, Mohamed H. Haggag. 
300 |b Ilustr. 
504 |a Bibliografija: 
504 |a Summary. 
520 |a The targeted attack is one of the social engineering attacks. The detection of this type of attack is considered a challenge as it depends on semantic extraction of the intent of the attacker. However, previous research has primarily relies on the Natural Language Processing or Word Embedding techniques that lack the context of the attacker's text message. Based on Sentence Embedding and machine learning approaches, this paper introduces a model for semantic detection of targeted attacks. This model has the advantage of encoding relevant information, which helps to improve the performance of the multi-class classification process. Messages will be categorized based on the type of security rule that the attacker has violated. The suggested model was tested using a dialogue dataset taken from phone calls, which was manually categorized into four categories. The text is pre-processed using natural language processing techniques, and the semantic features are extracted as Sentence Embedding vectors that are augmented with security policy sentences. Machine Learning algorithms are applied to classify text messages. The experimental results show that sentence embeddings with doc2vec achieved high prediction accuracy 96.8%. So, it outperformed the method applied to the same dialog dataset. 
700 1 |a Hussein Mohamed, Ensaf  |4 aut  |9 HR-ZaNSK 
700 1 |a H. Haggag, Mohamed  |4 aut  |9 HR-ZaNSK 
773 0 |t Journal of communications software and systems (Online)  |x 1846-6079  |g 17 (2021), 4 ; str. 334-341  |w nsk.(HR-ZaNSK)000644741 
981 |b Be2021 
856 4 0 |u https://doi.org/10.24138/jcomss-2021-0113 
856 4 0 |u https://jcoms.fesb.unist.hr/10.24138/jcomss-2021-0113/  |y Elektronička verzija članka 
856 4 0 |u https://jcoms.fesb.unist.hr/pdfs/v17n4_2021-0113_rahmany.pdf  |y Elektronička verzija članka 
856 4 1 |y Digitalna.nsk.hr 
856 4 0 |u https://hrcak.srce.hr/270738  |y Elektronička verzija članka