Explicit characterization of the torsion growth of rational elliptic curves with complex multiplication over quadratic fields

In a series of papers we classify the possible torsion structures of rational elliptic curves base-extended to number fields of a fixed degree. In this paper we turn our attention to the question of how the torsion of an elliptic curve with complex multiplication defined over the rationals grows ove...

Full description

Permalink: http://skupnikatalog.nsk.hr/Record/nsk.NSK01001145047/Details
Matična publikacija: Glasnik matematički (Online)
56 (2021), 1 ; str. 47-61
Glavni autor: González-Jiménez, Enrique (Author)
Vrsta građe: e-članak
Jezik: eng
Predmet:
Online pristup: https://doi.org/10.3336/gm.56.1.04
Glasnik matematički (Online)
Hrčak
LEADER 01726naa a22003374i 4500
001 NSK01001145047
003 HR-ZaNSK
005 20221006151706.0
006 m d
007 cr||||||||||||
008 220803s2021 ci d |o |0|| ||eng
024 7 |2 doi  |a 10.3336/gm.56.1.04 
035 |a (HR-ZaNSK)001145047 
040 |a HR-ZaNSK  |b hrv  |c HR-ZaNSK  |e ppiak 
042 |a croatica 
044 |a ci  |c hr 
080 1 |a 51  |2 2011 
100 1 |a González-Jiménez, Enrique  |4 aut  |9 HR-ZaNSK 
245 1 0 |a Explicit characterization of the torsion growth of rational elliptic curves with complex multiplication over quadratic fields  |h [Elektronička građa] /  |c Enrique González-Jiménez. 
300 |b Graf. prikazi. 
504 |a Bibliografija: 34 jed. 
504 |a Abstract. 
520 |a In a series of papers we classify the possible torsion structures of rational elliptic curves base-extended to number fields of a fixed degree. In this paper we turn our attention to the question of how the torsion of an elliptic curve with complex multiplication defined over the rationals grows over quadratic fields. We go further and we give an explicit characterization of the quadratic fields where the torsion grows in terms of some invariants attached to the curve. 
653 0 |a Eliptičke krivulje  |a Kvadratna polja  |a Torzijska grupa 
773 0 |t Glasnik matematički (Online)  |x 1846-7989  |g 56 (2021), 1 ; str. 47-61  |w nsk.(HR-ZaNSK)000659858 
981 |b Be2021  |b B03/21 
998 |b tino2210 
856 4 0 |u https://doi.org/10.3336/gm.56.1.04 
856 4 0 |u https://web.math.pmf.unizg.hr/glasnik/EasyTracker.php?id=56104  |y Glasnik matematički (Online) 
856 4 1 |y Digitalna.nsk.hr 
856 4 0 |u https://hrcak.srce.hr/259300  |y Hrčak