Unitary dual of p-adic group SO(7) with support on minimal parabolic subgroup

In this paper, the unitary dual of p-adic group SO(7) with support on minimal parabolic subgroup is determined. In explicit determination of the unitary dual the external approach is used, which represents the basic approach for finding the unitary dual, and consists of two main steps: a complete de...

Full description

Permalink: http://skupnikatalog.nsk.hr/Record/nsk.NSK01001145043/Details
Matična publikacija: Glasnik matematički (Online)
56 (2021), 1 ; str. 107-149
Glavni autor: Brajković, Darija (Author)
Vrsta građe: e-članak
Jezik: eng
Predmet:
Online pristup: https://doi.org/10.3336/gm.56.1.08
Glasnik matematički (Online)
Hrčak
LEADER 01714naa a22003254i 4500
001 NSK01001145043
003 HR-ZaNSK
005 20221007114745.0
006 m d
007 cr||||||||||||
008 220803s2021 ci |o |0|| ||eng
024 7 |2 doi  |a 10.3336/gm.56.1.08 
035 |a (HR-ZaNSK)001145043 
040 |a HR-ZaNSK  |b hrv  |c HR-ZaNSK  |e ppiak 
042 |a croatica 
044 |a ci  |c hr 
080 1 |a 51  |2 2011 
100 1 |a Brajković, Darija  |4 aut 
245 1 0 |a Unitary dual of p-adic group SO(7) with support on minimal parabolic subgroup  |h [Elektronička građa] /  |c Darija Brajković Zorić. 
504 |a Bibliografija: 22 jed. 
504 |a Abstract. 
520 |a In this paper, the unitary dual of p-adic group SO(7) with support on minimal parabolic subgroup is determined. In explicit determination of the unitary dual the external approach is used, which represents the basic approach for finding the unitary dual, and consists of two main steps: a complete description of the non-unitary dual and the extraction of the classes of unitarizable representations among the obtained irreducible subquotients. We expect that our results will provide deeper insight into the structure of the unitary dual in the general case. 
653 0 |a P-adske grupe  |a Ortogonalna grupa  |a Unitarni dual 
773 0 |t Glasnik matematički (Online)  |x 1846-7989  |g 56 (2021), 1 ; str. 107-149  |w nsk.(HR-ZaNSK)000659858 
981 |b Be2021  |b B03/21 
998 |b tino2210 
856 4 0 |u https://doi.org/10.3336/gm.56.1.08 
856 4 0 |u https://web.math.pmf.unizg.hr/glasnik/EasyTracker.php?id=56108  |y Glasnik matematički (Online) 
856 4 1 |y Digitalna.nsk.hr 
856 4 0 |u https://hrcak.srce.hr/259304  |y Hrčak