Determinants of some pentadiagonal matrices

In this paper we consider pentadiagonal (n+1)×(n+1) matrices with two subdiagonals and two superdiagonals at distances k and 2k from the main diagonal where 1≤k < 2k n. We give an explicit formula for their determinants and also consider the Toeplitz and "imperfect" Toeplitz versions of...

Full description

Permalink: http://skupnikatalog.nsk.hr/Record/nsk.NSK01001145035/Details
Matična publikacija: Glasnik matematički (Online)
56 (2021), 2 ; str. 271-286
Glavni autor: Losonczi, Laszlo (Author)
Vrsta građe: e-članak
Jezik: eng
Predmet:
Online pristup: https://doi.org/10.3336/gm.56.2.05
Glasnik matematički (Online)
Hrčak
LEADER 01651naa a22003254i 4500
001 NSK01001145035
003 HR-ZaNSK
005 20221007112230.0
006 m d
007 cr||||||||||||
008 220803s2021 ci |o |0|| ||eng
024 7 |2 doi  |a 10.3336/gm.56.2.05 
035 |a (HR-ZaNSK)001145035 
040 |a HR-ZaNSK  |b hrv  |c HR-ZaNSK  |e ppiak 
042 |a croatica 
044 |a ci  |c hr 
080 1 |a 51  |2 2011 
100 1 |a Losonczi, Laszlo  |4 aut 
245 1 0 |a Determinants of some pentadiagonal matrices  |h [Elektronička građa]  |c László Losonczi. 
504 |a Bibliografija: 27 jed. 
504 |a Abstract. 
520 |a In this paper we consider pentadiagonal (n+1)×(n+1) matrices with two subdiagonals and two superdiagonals at distances k and 2k from the main diagonal where 1≤k < 2k n. We give an explicit formula for their determinants and also consider the Toeplitz and "imperfect" Toeplitz versions of such matrices. Imperfectness means that the first and last k elements of the main diagonal differ from the elements in the middle. Using the rearrangement due to Egerv´ary and Sz´asz we also show how these determinants can be factorized. 
653 0 |a Determinante  |a Toeplitzova matrica  |a Trodijagonalna matrica 
773 0 |t Glasnik matematički (Online)  |x 1846-7989  |g 56 (2021), 2 ; str. 271-286  |w nsk.(HR-ZaNSK)000659858 
981 |b Be2021  |b B03/21 
998 |b tino2210 
856 4 0 |u https://doi.org/10.3336/gm.56.2.05 
856 4 0 |u https://web.math.pmf.unizg.hr/glasnik/EasyTracker.php?id=56205  |y Glasnik matematički (Online) 
856 4 1 |y Digitalna.nsk.hr 
856 4 0 |u https://hrcak.srce.hr/267563  |y Hrčak