Ternary multicomponent adsorption modelling using ANN, LS-SVR, and SVR approach

The aim of this work was to develop three artificial intelligence-based methods to model the ternary adsorption of heavy metal ions {Pb2+, Hg2+, Cd2+, Cu2+, Zn2+, Ni2+, Cr4+} on different adsorbates {activated carbon, chitosan, Danish peat, Heilongjiang peat, carbon sunflower head, and carbon sunflo...

Full description

Permalink: http://skupnikatalog.nsk.hr/Record/nsk.NSK01001144941/Details
Matična publikacija: Kemija u industriji (Online)
70 (2021), 9/10 ; str. 509-518
Glavni autori: Yettou, Amina (Author), Laidi, Maamar, El Bey, Abdelmadjid, Hanini, Salah, Hentabli, Mohamed, Khaldi, Omar, Abderrahim, Mihoub
Vrsta građe: e-članak
Jezik: eng
Predmet:
Online pristup: https://doi.org/10.15255/KUI.2020.071
Kemija u industriji (Online)
Hrčak
LEADER 02951naa a22004454i 4500
001 NSK01001144941
003 HR-ZaNSK
005 20221219134902.0
006 m d
007 cr||||||||||||
008 220803s2021 ci d |o |0|| ||eng
024 7 |2 doi  |a 10.15255/KUI.2020.071 
035 |a (HR-ZaNSK)001144941 
040 |a HR-ZaNSK  |b hrv  |c HR-ZaNSK  |e ppiak 
041 0 |a eng  |b hrv 
042 |a croatica 
044 |a ci  |c hr 
080 1 |a 54  |2 2011 
080 1 |a 004  |2 2011 
100 1 |a Yettou, Amina  |4 aut  |9 HR-ZaNSK 
245 1 0 |a Ternary multicomponent adsorption modelling using ANN, LS-SVR, and SVR approach  |h [Elektronička građa] :  |b case study /  |c Amina Yettou, Maamar Laidi, Abdelmadjid El Bey, Salah Hanini, Mohamed Hentabli, Omar Khaldi, Mihoub Abderrahim. 
300 |b Graf. prikazi. 
504 |a Bibliografija: 28 jed. 
504 |a Abstract ; Sažetak. 
520 |a The aim of this work was to develop three artificial intelligence-based methods to model the ternary adsorption of heavy metal ions {Pb2+, Hg2+, Cd2+, Cu2+, Zn2+, Ni2+, Cr4+} on different adsorbates {activated carbon, chitosan, Danish peat, Heilongjiang peat, carbon sunflower head, and carbon sunflower stem). Results show that support vector regression (SVR) performed slightly better, more accurate, stable, and more rapid than least-square support vector regression (LS-SVR) and artificial neural networks (ANN). The SVR model is highly recommended for estimating the ternary adsorption kinetics of a multicomponent system. 
520 |a Cilj ovog rada bio je razviti tri metode temeljene na umjetnoj inteligenciji za modeliranje trostruke adsorpcije iona teških metala {Pb2+, Hg2+, Cd2+, Cu2+, Zn2+, Ni2+, Cr4+} na različitim adsorbatima {aktivni ugljen, kitozan, danski treset, treset Heilongjiang, ugljik glave suncokreta i ugljik stabljike suncokreta). Rezultati pokazuju da se regresija potpornih vektora (SVR) pokazala nešto boljom, preciznijom, stabilnijom i bržom od regresije potpornih vektora najmanjih kvadrata (LS-SVR) i umjetnih neuronskih mreža (ANN). Za procjenu kinetike trostrukog adsorpcijskog sustava višekomponentnog sustava preporučuje se model SVR. 
653 0 |a Teški metali  |a Umjetne neuronske mreže  |a Regresija potpornih vektora  |a Adsorpcija 
700 1 |a Laidi, Maamar  |4 aut  |9 HR-ZaNSK 
700 1 |a El Bey, Abdelmadjid  |4 aut  |9 HR-ZaNSK 
700 1 |a Hanini, Salah  |4 aut  |9 HR-ZaNSK 
700 1 |a Hentabli, Mohamed  |4 aut  |9 HR-ZaNSK 
700 1 |a Khaldi, Omar  |4 aut  |9 HR-ZaNSK 
700 1 |a Abderrahim, Mihoub  |4 aut  |9 HR-ZaNSK 
773 0 |t Kemija u industriji (Online)  |x 1334-9090  |g 70 (2021), 9/10 ; str. 509-518  |w nsk.(HR-ZaNSK)000530475 
981 |b Be2021  |b B03/21 
998 |b tino2212 
856 4 0 |u https://doi.org/10.15255/KUI.2020.071 
856 4 0 |u http://silverstripe.fkit.hr/kui/issue-archive/article/809  |y Kemija u industriji (Online) 
856 4 0 |u https://hrcak.srce.hr/261417  |y Hrčak 
856 4 1 |y Digitalna.nsk.hr