Inverted sparse discriminant preserving projection for face recognition

Image classification and face recognition has been a popular subject matter for the last several decades. Images are usually handled as transformed as vectors which makes their classification a dimensionality reduction task. Some of the well-known algorithms in the area, such as the Sparsity Preserv...

Full description

Permalink: http://skupnikatalog.nsk.hr/Record/nsk.NSK01001136762/Details
Matična publikacija: Journal of information and organizational sciences (Online)
45 (2021), 2 ; str. 495-511
Glavni autor: Kirilov, Kiril (Author)
Vrsta građe: e-članak
Jezik: eng
Predmet:
Online pristup: https://doi.org/10.31341/jios.45.2.8
Journal of information and organizational sciences (Online)
Hrčak
LEADER 02611naa a22003374i 4500
001 NSK01001136762
003 HR-ZaNSK
005 20220630152314.0
006 m d
007 cr||||||||||||
008 220503s2021 ci ad |o |0|| ||eng
024 7 |2 doi  |a 10.31341/jios.45.2.8 
035 |a (HR-ZaNSK)001136762 
040 |a HR-ZaNSK  |b hrv  |c HR-ZaNSK  |e ppiak 
042 |a croatica 
044 |a ci  |c hr 
080 1 |a 004  |2 2011 
100 1 |a Kirilov, Kiril  |4 aut  |9 HR-ZaNSK 
245 1 0 |a Inverted sparse discriminant preserving projection for face recognition  |h [Elektronička građa] /  |c Kiril Kirilov. 
300 |b Ilustr. ; graf. prikazi. 
504 |a Bibliografske bilješke na kraju teksta. 
504 |a Abstract. 
520 |a Image classification and face recognition has been a popular subject matter for the last several decades. Images are usually handled as transformed as vectors which makes their classification a dimensionality reduction task. Some of the well-known algorithms in the area, such as the Sparsity Preserving Projection (SPP), create new theoretical concepts families, while other successfully modify or combine useful properties of the former ones. Compiled algorithms like Sparse Discriminant Preserving Projections (SDPP) employ the properties of the Sparse Representation (SR) as in their objective functions they include a supervised modification of the sparse weight matrix that considers the intra-class relations. By examining the construction of the SDPP algorithm and by providing some arguments on the supervised SR, in this paper we propose a new subspace learning algorithm, called Inverted Sparse Discriminant Preserving Projection (ISDPP). Likewise SDPP, ISDPP integrates supervised SR with the Fisher"s criterion. In contrast to SDPP, ISDPP incorporates a between-class SR with the Fischer"s within-class scatter matrix. A preliminary round of experiments support the initiative and provide an expectation for possible superior performance of the proposed ISDPP that is confirmed in the next round of empirical examinations. 
653 0 |a Smanjenje dimenzionalnosti  |a Prepoznavanje lica  |a Obrada slike  |a Algoritmi 
773 0 |t Journal of information and organizational sciences (Online)  |x 1846-9418  |g 45 (2021), 2 ; str. 495-511  |w nsk.(HR-ZaNSK)000672813 
981 |b Be2021  |b B02/21 
998 |b tino2206 
856 4 0 |u https://doi.org/10.31341/jios.45.2.8 
856 4 0 |u https://jios.foi.hr/index.php/jios/article/view/1619  |y Journal of information and organizational sciences (Online) 
856 4 1 |y Digitalna.nsk.hr 
856 4 0 |u https://hrcak.srce.hr/270712  |y Hrčak