Extension of the functional independence of the Riemann zeta-function

In 1972, Voronin proved the functional independence of the Riemann zeta-function ζ(s), i. e., if the functions φj are continuous in ℂN and φ0(ζ(s), …, ζ(N-1)(s))+ ∙∙∙ + sn φn(ζ(s), …, ζ(N-1)(s)) ≡ 0, then φj≡ 0 for j=0,…, n. The problem goes back to Hilbert who obtained the algebraic-differential in...

Full description

Permalink: http://skupnikatalog.nsk.hr/Record/nsk.NSK01001098346/Details
Matična publikacija: Glasnik matematički (Online)
55 (2020), 1 ; str. 55-65
Glavni autor: Laurinčikas, Antanas (Author)
Vrsta građe: e-članak
Jezik: eng
Predmet:
Online pristup: https://doi.org/10.3336/gm.55.1.05
Hrčak
LEADER 01695naa a22003254i 4500
001 NSK01001098346
003 HR-ZaNSK
005 20210609151459.0
006 m d
007 cr||||||||||||
008 210420s2020 ci |o |0|| ||eng
024 7 |2 doi  |a 10.3336/gm.55.1.05 
035 |a (HR-ZaNSK)001098346 
040 |a HR-ZaNSK  |b hrv  |c HR-ZaNSK  |e ppiak 
041 0 |a eng  |b eng 
042 |a croatica 
044 |a ci  |c hr 
080 1 |a 51  |2 2011 
100 1 |a Laurinčikas, Antanas  |4 aut 
245 1 0 |a Extension of the functional independence of the Riemann zeta-function  |h [Elektronička građa] /  |c Antanas Laurinčikas. 
504 |a Bibliografske bilješke na kraju teksta. 
504 |a Abstract. 
520 |a In 1972, Voronin proved the functional independence of the Riemann zeta-function ζ(s), i. e., if the functions φj are continuous in ℂN and φ0(ζ(s), …, ζ(N-1)(s))+ ∙∙∙ + sn φn(ζ(s), …, ζ(N-1)(s)) ≡ 0, then φj≡ 0 for j=0,…, n. The problem goes back to Hilbert who obtained the algebraic-differential independence of ζ(s). In the paper, the functional independence of compositions F(ζ(s)) for some classes of operators F in the space of analytic functions is proved. For example, as a particular case, the functional independence of the function cosζ(s) follows. 
653 0 |a Algebra  |a Analitičke funkcije  |a Riemannova zeta-funkcija  |a Diferencijalna neovisnost 
773 0 |t Glasnik matematički (Online)  |x 1846-7989  |g 55 (2020), 1 ; str. 55-65  |w nsk.(HR-ZaNSK)000659858 
981 |b Be2020  |b B03/20 
998 |b tino2106 
856 4 0 |u https://doi.org/10.3336/gm.55.1.05 
856 4 0 |u https://hrcak.srce.hr/239046  |y Hrčak 
856 4 1 |y Digitalna.nsk.hr