Approximate inverse limits and (m,n)-dimensions

In 2012, V. Fedorchuk, using m-pairs and n-partitions, introduced the notion of the (m,n)-dimension of a space. It generalizes covering dimension. Here we are going to look at this concept in the setting of approximate inverse systems of compact metric spaces. We give a characterization of (m,n)-dim...

Full description

Permalink: http://skupnikatalog.nsk.hr/Record/nsk.NSK01001098340/Details
Matična publikacija: Glasnik matematički (Online)
55 (2020), 1 ; str. 129-142
Glavni autori: Lynam, Matthew (Author), Rubin, Leonard R.
Vrsta građe: e-članak
Jezik: eng
Predmet:
Online pristup: https://doi.org/10.3336/gm.55.1.11
Hrčak
LEADER 01519naa a22003374i 4500
001 NSK01001098340
003 HR-ZaNSK
005 20210610150903.0
006 m d
007 cr||||||||||||
008 210420s2020 ci |o |0|| ||eng
024 7 |2 doi  |a 10.3336/gm.55.1.11 
035 |a (HR-ZaNSK)001098340 
040 |a HR-ZaNSK  |b hrv  |c HR-ZaNSK  |e ppiak 
041 0 |a eng  |b eng 
042 |a croatica 
044 |a ci  |c hr 
080 1 |a 51  |2 2011 
100 1 |a Lynam, Matthew  |4 aut  |9 HR-ZaNSK 
245 1 0 |a Approximate inverse limits and (m,n)-dimensions  |h [Elektronička građa] /  |c Matthew Lynam, Leonard R. Rubin. 
504 |a Bibliografske bilješke na kraju teksta. 
504 |a Abstract. 
520 |a In 2012, V. Fedorchuk, using m-pairs and n-partitions, introduced the notion of the (m,n)-dimension of a space. It generalizes covering dimension. Here we are going to look at this concept in the setting of approximate inverse systems of compact metric spaces. We give a characterization of (m,n)-dim X, where X is the limit of an approximate inverse system, strictly in terms of the given system. 
653 0 |a Aproksimativni inverzni sustavi  |a Aproksimativni limesi  |a Dimenzije 
700 1 |a Rubin, Leonard R.  |4 aut 
773 0 |t Glasnik matematički (Online)  |x 1846-7989  |g 55 (2020), 1 ; str. 129-142  |w nsk.(HR-ZaNSK)000659858 
981 |b Be2020  |b B03/20 
998 |b tino2106 
856 4 0 |u https://doi.org/10.3336/gm.55.1.11 
856 4 0 |u https://hrcak.srce.hr/239052  |y Hrčak 
856 4 1 |y Digitalna.nsk.hr