Explicit bounds for composite lacunary polynomials

Let f, g, h∈ ℂ [x] be non-constant complex polynomials satisfying f(x)=g(h(x)) and let f be lacunary in the sense that it has at most l non-constant terms. Zannier proved in [9] that there exists a function B1(l) on ℕ, depending only on l and with the property that h(x) can be written as the ratio o...

Full description

Permalink: http://skupnikatalog.nsk.hr/Record/nsk.NSK01001075564/Details
Matična publikacija: Glasnik matematički (Online)
54 (2019), 1 ; str. 11-20
Glavni autor: Karolus, Christina (Author)
Vrsta građe: e-članak
Jezik: eng
Predmet:
Online pristup: https://doi.org/10.3336/gm.54.1.02
Glasnik matematički (Online)
Hrčak
LEADER 01802naa a22003494i 4500
001 NSK01001075564
003 HR-ZaNSK
005 20201023151944.0
006 m d
007 cr||||||||||||
008 200928s2019 ci |o |0|| ||eng
024 7 |2 doi  |a 10.3336/gm.54.1.02 
035 |a (HR-ZaNSK)001075564 
040 |a HR-ZaNSK  |b hrv  |c HR-ZaNSK  |e ppiak 
041 0 |a eng  |b eng 
042 |a croatica 
044 |a ci  |c hr 
080 1 |a 51  |2 2011 
100 1 |a Karolus, Christina  |4 aut  |9 HR-ZaNSK 
245 1 0 |a Explicit bounds for composite lacunary polynomials  |h [Elektronička građa] /  |c Christina Karolus. 
500 |a Bilješke uz tekst. 
504 |a Bibliografija: 10 jed. 
504 |a Abstract. 
520 |a Let f, g, h∈ ℂ [x] be non-constant complex polynomials satisfying f(x)=g(h(x)) and let f be lacunary in the sense that it has at most l non-constant terms. Zannier proved in [9] that there exists a function B1(l) on ℕ, depending only on l and with the property that h(x) can be written as the ratio of two polynomials having each at most B1(l) terms. Here, we give explicit estimates for this function or, more precisely, we prove that one may take for instance B1(l)=(4l) (2l) (3l) (l+1). Moreover, in the case l=2, a better bound is obtained using the same strategy. 
653 0 |a Polinomi  |a Lakunarni polinomi  |a Rastav polinoma  |a Reducibilni polinomi  |a Faktorizacija polinoma 
773 0 |t Glasnik matematički (Online)  |x 1846-7989  |g 54 (2019), 1 ; str. 11-20  |w nsk.(HR-ZaNSK)000659858 
981 |b Be2019  |b B05/19 
998 |b tino2010 
856 4 0 |u https://doi.org/10.3336/gm.54.1.02 
856 4 0 |u https://web.math.pmf.unizg.hr/glasnik/EasyTracker.php?id=54102  |y Glasnik matematički (Online) 
856 4 0 |u https://hrcak.srce.hr/220840  |y Hrčak 
856 4 1 |y Digitalna.nsk.hr