A polynomial variant of a problem of Diophantus and its consequences

In this paper we prove that every Diophantine quadruple in [X] is regular. In other words, we prove that if {a, b, c, d} is a set of four non-zero elements of [X], not all constant, such that the product of any two of its distinct elements increased by 1 is a square of an element of [X], then (a+b-c...

Full description

Permalink: http://skupnikatalog.nsk.hr/Record/nsk.NSK01001075563/Details
Matična publikacija: Glasnik matematički (Online)
54 (2019), 1 ; str. 21-52
Glavni autori: Filipin, Alan (Author), Jurasić, Ana
Vrsta građe: e-članak
Jezik: eng
Predmet:
Online pristup: https://doi.org/10.3336/gm.54.1.03
Glasnik matematički (Online)
Hrčak
LEADER 01898naa a22003614i 4500
001 NSK01001075563
003 HR-ZaNSK
005 20201023143950.0
006 m d
007 cr||||||||||||
008 200928s2019 ci |o |0|| ||eng
024 7 |2 doi  |a 10.3336/gm.54.1.03 
035 |a (HR-ZaNSK)001075563 
040 |a HR-ZaNSK  |b hrv  |c HR-ZaNSK  |e ppiak 
041 0 |a eng  |b eng 
042 |a croatica 
044 |a ci  |c hr 
080 1 |a 51  |2 2011 
100 1 |a Filipin, Alan  |4 aut 
245 1 2 |a A polynomial variant of a problem of Diophantus and its consequences  |h [Elektronička građa] /  |c Alan Filipin, Ana Jurasić. 
500 |a Bilješke uz tekst. 
504 |a Bibliografija: 30 jed. 
504 |a Abstract. 
520 |a In this paper we prove that every Diophantine quadruple in [X] is regular. In other words, we prove that if {a, b, c, d} is a set of four non-zero elements of [X], not all constant, such that the product of any two of its distinct elements increased by 1 is a square of an element of [X], then (a+b-c-d)2=4(ab+1)(cd+1). Some consequences of the above result are that for an arbitrary n there does not exist a set of five non-zero elements from [X], which are not all constant, such that the product of any two of its distinct elements increased by n is a square of an element of [X]. Furthermore, there can exist such a set of four non-zero elements of [X] if and only if n is a square. 
653 0 |a Polinomi  |a Diofantove m-torke 
700 1 |a Jurasić, Ana  |4 aut 
773 0 |t Glasnik matematički (Online)  |x 1846-7989  |g 54 (2019), 1 ; str. 21-52  |w nsk.(HR-ZaNSK)000659858 
981 |b Be2019  |b B05/19 
998 |b tino2010 
856 4 0 |u https://doi.org/10.3336/gm.54.1.03 
856 4 0 |u https://web.math.pmf.unizg.hr/glasnik/EasyTracker.php?id=54103  |y Glasnik matematički (Online) 
856 4 0 |u https://hrcak.srce.hr/220841  |y Hrčak 
856 4 1 |y Digitalna.nsk.hr