A polynomial variant of a problem of Diophantus and its consequences
In this paper we prove that every Diophantine quadruple in [X] is regular. In other words, we prove that if {a, b, c, d} is a set of four non-zero elements of [X], not all constant, such that the product of any two of its distinct elements increased by 1 is a square of an element of [X], then (a+b-c...
Permalink: | http://skupnikatalog.nsk.hr/Record/nsk.NSK01001075563/Details |
---|---|
Matična publikacija: |
Glasnik matematički (Online) 54 (2019), 1 ; str. 21-52 |
Glavni autori: | Filipin, Alan (Author), Jurasić, Ana |
Vrsta građe: | e-članak |
Jezik: | eng |
Predmet: | |
Online pristup: |
https://doi.org/10.3336/gm.54.1.03 Glasnik matematički (Online) Hrčak |
LEADER | 01898naa a22003614i 4500 | ||
---|---|---|---|
001 | NSK01001075563 | ||
003 | HR-ZaNSK | ||
005 | 20201023143950.0 | ||
006 | m d | ||
007 | cr|||||||||||| | ||
008 | 200928s2019 ci |o |0|| ||eng | ||
024 | 7 | |2 doi |a 10.3336/gm.54.1.03 | |
035 | |a (HR-ZaNSK)001075563 | ||
040 | |a HR-ZaNSK |b hrv |c HR-ZaNSK |e ppiak | ||
041 | 0 | |a eng |b eng | |
042 | |a croatica | ||
044 | |a ci |c hr | ||
080 | 1 | |a 51 |2 2011 | |
100 | 1 | |a Filipin, Alan |4 aut | |
245 | 1 | 2 | |a A polynomial variant of a problem of Diophantus and its consequences |h [Elektronička građa] / |c Alan Filipin, Ana Jurasić. |
500 | |a Bilješke uz tekst. | ||
504 | |a Bibliografija: 30 jed. | ||
504 | |a Abstract. | ||
520 | |a In this paper we prove that every Diophantine quadruple in [X] is regular. In other words, we prove that if {a, b, c, d} is a set of four non-zero elements of [X], not all constant, such that the product of any two of its distinct elements increased by 1 is a square of an element of [X], then (a+b-c-d)2=4(ab+1)(cd+1). Some consequences of the above result are that for an arbitrary n there does not exist a set of five non-zero elements from [X], which are not all constant, such that the product of any two of its distinct elements increased by n is a square of an element of [X]. Furthermore, there can exist such a set of four non-zero elements of [X] if and only if n is a square. | ||
653 | 0 | |a Polinomi |a Diofantove m-torke | |
700 | 1 | |a Jurasić, Ana |4 aut | |
773 | 0 | |t Glasnik matematički (Online) |x 1846-7989 |g 54 (2019), 1 ; str. 21-52 |w nsk.(HR-ZaNSK)000659858 | |
981 | |b Be2019 |b B05/19 | ||
998 | |b tino2010 | ||
856 | 4 | 0 | |u https://doi.org/10.3336/gm.54.1.03 |
856 | 4 | 0 | |u https://web.math.pmf.unizg.hr/glasnik/EasyTracker.php?id=54103 |y Glasnik matematički (Online) |
856 | 4 | 0 | |u https://hrcak.srce.hr/220841 |y Hrčak |
856 | 4 | 1 | |y Digitalna.nsk.hr |