[Delta]-related functions and generalized inverse limits

For any continuous single-valued functions f,g: [0,1] → [0,1] we define upper semicontinuous set-valued functions F,G: [0,1] ⊸ [0,1] by their graphs as the unions of the diagonal Δ and the graphs of set-valued inverses of f and g respectively. We introduce when two functions are Δ-related and show t...

Full description

Permalink: http://skupnikatalog.nsk.hr/Record/nsk.NSK01001075547/Details
Matična publikacija: Glasnik matematički (Online)
54 (2019), 2 ; str. 463-476
Glavni autor: Sovič, Tina (Author)
Vrsta građe: e-članak
Jezik: eng
Predmet:
Online pristup: https://doi.org/10.3336/gm.54.2.09
Glasnik matematički (Online)
Hrčak
LEADER 01643naa a22003614i 4500
001 NSK01001075547
003 HR-ZaNSK
005 20201026153416.0
006 m d
007 cr||||||||||||
008 200928s2019 ci a |o |0|| ||eng
024 7 |2 doi  |a 10.3336/gm.54.2.09 
035 |a (HR-ZaNSK)001075547 
040 |a HR-ZaNSK  |b hrv  |c HR-ZaNSK  |e ppiak 
041 0 |a eng  |b eng 
042 |a croatica 
044 |a ci  |c hr 
080 1 |a 51  |2 2011 
100 1 |a Sovič, Tina  |4 aut 
245 1 1 |a [Delta]-related functions and generalized inverse limits  |h [Elektronička građa] /  |c Tina Sovič. 
300 |b Ilustr. 
504 |a Bibliografija: 8 jed. 
504 |a Abstract. 
546 |b Grčko slovo u stv. naslovu. 
520 |a For any continuous single-valued functions f,g: [0,1] → [0,1] we define upper semicontinuous set-valued functions F,G: [0,1] ⊸ [0,1] by their graphs as the unions of the diagonal Δ and the graphs of set-valued inverses of f and g respectively. We introduce when two functions are Δ-related and show that if f and g are Δ-related, then the inverse limits and are homeomorphic. We also give conditions under which is a quotient space of . 
653 0 |a Delta funkcije  |a Kvocijentne karte  |a Količnici 
773 0 |t Glasnik matematički (Online)  |x 1846-7989  |g 54 (2019), 2 ; str. 463-476  |w nsk.(HR-ZaNSK)000659858 
981 |b Be2019  |b B05/19 
998 |b tino2010 
856 4 0 |u https://doi.org/10.3336/gm.54.2.09 
856 4 0 |u https://web.math.pmf.unizg.hr/glasnik/EasyTracker.php?id=54209  |y Glasnik matematički (Online) 
856 4 0 |u https://hrcak.srce.hr/229606  |y Hrčak 
856 4 1 |y Digitalna.nsk.hr