Sleep apnea detection using deep learning

Sleep apnea is the cessation of airflow at least 10 seconds and it is the type of breathing disorder in which breathing stops at the time of sleeping. The proposed model uses type 4 sleep study which focuses more on portability and the reduction of the signals. The main limitations of type 1 full ni...

Full description

Permalink: http://skupnikatalog.nsk.hr/Record/nsk.NSK01001061202/Details
Matična publikacija: Tehnički glasnik (Online)
13 (2019), 4 ; str. 261-266
Glavni autori: Chaw, Hnin Thiri (Author), Kamolphiwong, Sinchai, Wongsritrang, Krongthong
Vrsta građe: e-članak
Jezik: eng
Predmet:
Online pristup: https://doi.org/10.31803/tg-20191104191722
Hrčak
LEADER 02230naa a22003734i 4500
001 NSK01001061202
003 HR-ZaNSK
005 20200714090352.0
006 m d
007 cr||||||||||||
008 200422s2019 ci d |o |0|| ||eng
024 7 |2 doi  |a 10.31803/tg-20191104191722 
035 |a (HR-ZaNSK)001061202 
040 |a HR-ZaNSK  |b hrv  |c HR-ZaNSK  |e ppiak 
041 0 |a eng  |b eng 
042 |a croatica 
044 |a ci  |c hr 
080 1 |a 616  |2 2011 
080 1 |a 004  |2 2011 
100 1 |a Chaw, Hnin Thiri  |4 aut  |9 HR-ZaNSK 
245 1 0 |a Sleep apnea detection using deep learning  |h [Elektronička građa] /  |c Hnin Thiri Chaw, Sinchai Kamolphiwong, Krongthong Wongsritrang. 
300 |b Graf. prikazi. 
504 |a Bibliografija: 32 jed. 
504 |a Abstract. 
520 |a Sleep apnea is the cessation of airflow at least 10 seconds and it is the type of breathing disorder in which breathing stops at the time of sleeping. The proposed model uses type 4 sleep study which focuses more on portability and the reduction of the signals. The main limitations of type 1 full night polysomnography are time consuming and it requires much space for sleep recording such as sleep lab comparing to type 4 sleep studies. The detection of sleep apnea using deep convolutional neural network model based on SPO2 sensor is the valid alternative for efficient polysomnography and it is portable and cost effective. The total number of samples from SPO2 sensors of 50 patients that is used in this study is 190,000. The performance of the overall accuracy of sleep apnea detection is 91.3085% with the loss rate of 2.3 using cross entropy cost function using deep convolutional neural network. 
653 0 |a Apneja  |a Otkrivanje  |a Poremećaji spavanja  |a Studija spavanja  |a Neuronske mreže  |a Snimanje bioparametara  |a Polisomnografija 
700 1 |a Kamolphiwong, Sinchai  |4 aut  |9 HR-ZaNSK 
700 1 |a Wongsritrang, Krongthong  |4 aut  |9 HR-ZaNSK 
773 0 |t Tehnički glasnik (Online)  |x 1848-5588  |g 13 (2019), 4 ; str. 261-266  |w nsk.(HR-ZaNSK)000810940 
981 |b Be2019  |b B03/19 
998 |b dalo2005 
856 4 0 |u https://doi.org/10.31803/tg-20191104191722 
856 4 0 |u http://hrcak.srce.hr/229492  |y Hrčak 
856 4 1 |y Digitalna.nsk.hr