Neural networks-based robust adaptive flight path tracking control of large transport

For the ultralow altitude airdrop decline stage, many factors such as actuator nonlinearity, the uncertain atmospheric disturbances, and model unknown nonlinearity affect the precision of trajectory tracking. A robust adaptive neural network dynamic surface control method is proposed. The neural net...

Full description

Permalink: http://skupnikatalog.nsk.hr/Record/nsk.NSK01001046202/Details
Matična publikacija: Engineering review (Online)
38 (2018), 3 ; str. 268-278
Glavni autori: Lv, Maolong (Author), Sun, Xiuxia, Xu, G. Z., Wang, Z. T.
Vrsta građe: e-članak
Jezik: eng
Predmet:
Online pristup: https://doi.org/10.30765/er.38.3.3
Hrčak
LEADER 02021naa a22003854i 4500
001 NSK01001046202
003 HR-ZaNSK
005 20191120154615.0
006 m d
007 cr||||||||||||
008 191108s2018 ci a |o |0|| ||eng
024 7 |2 doi  |a 10.30765/er.38.3.3 
035 |a (HR-ZaNSK)001046202 
040 |a HR-ZaNSK  |b hrv  |c HR-ZaNSK  |e ppiak 
041 0 |a eng  |b eng 
042 |a croatica 
044 |a ci  |c hr 
080 1 |a 656  |2 2011 
080 1 |a 004  |2 2011 
100 1 |a Lv, Maolong  |4 aut  |9 HR-ZaNSK 
245 1 0 |a Neural networks-based robust adaptive flight path tracking control of large transport  |h [Elektronička građa] /  |c Maolong Lv, Xiuxia Sun, G. Z. Xu, Z. T. Wang. 
300 |b Ilustr. 
504 |a Bibliografija: 26 jed. 
504 |a Abstract. 
520 |a For the ultralow altitude airdrop decline stage, many factors such as actuator nonlinearity, the uncertain atmospheric disturbances, and model unknown nonlinearity affect the precision of trajectory tracking. A robust adaptive neural network dynamic surface control method is proposed. The neural network is used to approximate unknown nonlinear continuous functions of the model, and a nonlinear robust term is introduced to eliminate the actuator’s nonlinear modeling error and external disturbances. From Lyapunov stability theorem, it is rigorously proved that all the signals in the closed-loop system are bounded. Simulation results confirm the perfect tracking performance and strong robustness of the proposed method. 
653 0 |a Neuronske mreže  |a Dinamička kontrola  |a Zračni promet  |a Kut upravljanja 
700 1 |a Sun, Xiuxia  |4 aut  |9 HR-ZaNSK 
700 1 |a Xu, G. Z.  |4 aut  |9 HR-ZaNSK 
700 1 |a Wang, Z. T.  |4 aut  |9 HR-ZaNSK 
773 0 |t Engineering review (Online)  |x 1849-0433  |g 38 (2018), 3 ; str. 268-278  |w nsk.(HR-ZaNSK)000848891 
981 |b Be2018  |b B02/18 
998 |b tino1911 
856 4 0 |u https://doi.org/10.30765/er.38.3.3 
856 4 1 |y Digitalna.nsk.hr 
856 4 0 |u https://hrcak.srce.hr/201150  |y Hrčak