Two convergent triangle tunnels

A semi-orthogonal path is a polygon inscribed into a given polygon such that the $i$-th side of the path is orthogonal to the $i$-th side of the given polygon. Especially in the case of triangles, the closed semi-orthogonal paths are triangles which turn out to be similar to the given triangle. The...

Full description

Permalink: http://skupnikatalog.nsk.hr/Record/nsk.NSK01001024780/Details
Matična publikacija: Kog (Online)
(2018), 22 ; str. 3-11
Glavni autor: Odehnal, Boris (Author)
Vrsta građe: e-članak
Jezik: eng
Predmet:
Online pristup: https://doi.org/10.31896/k.22.1
Hrčak
Kog (Online)
LEADER 02658naa a22003614i 4500
001 NSK01001024780
003 HR-ZaNSK
005 20210122111421.0
006 m d
007 cr||||||||||||
008 190321s2019 ci | |0|| ||eng
024 7 |2 doi  |a 10.31896/k.22.1 
035 |a (HR-ZaNSK)001024780 
040 |a HR-ZaNSK  |b hrv  |c HR-ZaNSK  |e ppiak 
041 0 |a eng  |b hrv 
042 |a croatica 
044 |a ci  |c hr 
080 1 |a 51  |2 2011 
100 1 |a Odehnal, Boris  |4 aut 
245 1 0 |a Two convergent triangle tunnels  |h [Elektronička građa] /  |c Boris Odehnal. 
300 |b Ilustr. 
504 |a Bibliografija: 10 jed. 
504 |a Sažetak. 
520 |a A semi-orthogonal path is a polygon inscribed into a given polygon such that the $i$-th side of the path is orthogonal to the $i$-th side of the given polygon. Especially in the case of triangles, the closed semi-orthogonal paths are triangles which turn out to be similar to the given triangle. The iteration of the construction of semi-orthogonal paths in triangles yields infinite sequences of nested and similar triangles. We show that these two different sequences converge towards the bicentric pair of the triangle's Brocard points. Furthermore, the relation to discrete logarithmic spirals allows us to give a very simple, elementary, and new constructions of the sequences' limits, the Brocard points. We also add some remarks on semi-orthogonal paths in non-Euclidean geometries and in $n$-gons. 
520 |a Poluortogonalan put je poligonalna linija upisana u dani mnogokut takva da je $i$-ta stranica poligonalne linije okomita na $i$-tu stranicu danog mnogokuta. U slučaju trokuta, zatvoreni poluortogonalni putovi su trokuti slični danom trokutu. Iteracijom konstrukcije poluortogonalnih putova u trokutima dobivaju se beskonačni nizovi upisanih sličnih trokuta. Pokazujemo da ova dva različita niza konvergiraju prema bicentričnom paru Brocardovih točaka trokuta.Nadalje, veza s diskretnim logaritamskim spiralama omogućuje vrlo jednostavnu, elementarnu i novu konstrukciju limesa ovih nizova, Brocardovih točaka. Iznosimo i neke napomene o poluortogonalnim putovima kako u neeuklidskim geometrijama i tako i za $n$-kute. 
653 0 |a Trokut  |a Poluortogonalan put  |a Brocardove točke  |a Sjecište simedijana 
773 0 |t Kog (Online)  |x 1846-4068  |g (2018), 22 ; str. 3-11  |w nsk.(HR-ZaNSK)000628952 
981 |b Be2019  |b B01/19 
998 |b tino1905 
856 4 0 |u https://doi.org/10.31896/k.22.1 
856 4 0 |u https://hrcak.srce.hr/214640  |y Hrčak 
856 4 1 |y Digitalna.nsk.hr 
856 4 0 |u http://master.grad.hr/hdgg/kog_stranica/kog22/03odehnal.pdf  |y Kog (Online)