Prediction of dynamic plasmid production by recombinant Escherichia coli fed-batch cultivations with a generalized regression neural network

Summary: A generalized regression neural network with external feedback was used to predict plasmid production in a fed-batch cultivation of recombinant Escherichia coli. The neural network was built out of the experimental data obtained on a few cultivations, of which the general strategy was based...

Full description

Permalink: http://skupnikatalog.nsk.hr/Record/nsk.NSK01000736457/Details
Matična publikacija: Chemical and biochemical engineering quarterly
23 (2009), 4 ; str. 419-427
Glavni autor: Silva, Teresa Lopes da (-)
Ostali autori: Lima, P. (-), Roxo-Rosa, M., Hageman, S., Fonseca, L. P., Calado, C. R. C.
Vrsta građe: Članak
Jezik: eng
Predmet:
Online pristup: Chemical and Biochemical Engineering Quarterly
LEADER 02286caa a2200313 ir4500
001 NSK01000736457
003 HR-ZaNSK
005 20170301160550.0
007 ta
008 100512s2009 ci ||| ||eng
035 |9 (HR-ZaNSK)739081 
035 |a (HR-ZaNSK)000736457 
040 |a HR-ZaNSK  |b hrv  |c HR-ZaNSK  |e ppiak 
042 |a croatica 
080 |a 66  |2 MRF 1998. 
100 1 |a Silva, Teresa Lopes da 
245 1 0 |a Prediction of dynamic plasmid production by recombinant Escherichia coli fed-batch cultivations with a generalized regression neural network /  |c T. Silva, P. Lima, M. Roxo-Rosa, S. Hageman, L. P. Fonseca, C. R. C. Calado. 
504 |a Bibliografija: 16 jed 
520 8 |a Summary: A generalized regression neural network with external feedback was used to predict plasmid production in a fed-batch cultivation of recombinant Escherichia coli. The neural network was built out of the experimental data obtained on a few cultivations, of which the general strategy was based on an initial batch phase followed by an exponential feeding phase. The different cultivation conditions used resulted in significant differences in bacterial growth and plasmid production. The obtained model allows estimation of the experimental outputs (biomass, glucose, acetate and plasmid) based on the bioreactor starting conditions and the following on-line inputs: feeding rate, dissolved oxygen concentration and bioreactor stirring speed. Therefore, the proposed methodology presents a quick, simple and reliable way to perform on-line feedback prediction of the dynamic behaviour of the complex plasmid production process, based on simple on-line input data obtained directly from the bioreactor control unit and with few cultivation experiments for neural network learning 
653 0 |a Bioreaktori  |a Neuralna mreža  |a Plazmidi  |a Geni  |a Rekombinacija gena  |a Escherichia coli 
700 1 |a Lima, P. 
700 1 |a Roxo-Rosa, M. 
700 1 |a Hageman, S. 
700 1 |a Fonseca, L. P. 
700 1 |a Calado, C. R. C. 
773 0 |t Chemical and biochemical engineering quarterly  |x 0352-9568  |g 23 (2009), 4 ; str. 419-427  |w nsk.(HR-ZaNSK)000004762 
981 |b B03/09 
998 |a Luko100512  |c vol2o121009 
856 4 2 |u http://hrcak.srce.hr/cabeq  |y Chemical and Biochemical Engineering Quarterly