Enhancing performance of image retrieval systems using dual tree complex wavelet transform and support vector machines

This paper presents a novel image retrieval system (SVMBIR) based on dual tree complex wavelet transform (CWT) and support vector machines (SVM). We have shown that how one can improve the performance of image retrieval systems by assuming two attributes. Firstly, images that user needs through quer...

Full description

Permalink: http://skupnikatalog.nsk.hr/Record/nsk.NSK01000709803/Details
Matična publikacija: CIT. Journal of computing and information technology
16 (2008), 1 ; str. 57-68
Glavni autor: Mumtaz, Adeel (-)
Ostali autori: Gilani, Syed Asif Mahmood (-), Hameed, Kamran, Jameel, Tahir
Vrsta građe: Članak
Jezik: eng
Predmet:
Online pristup: eCIT - Home page
LEADER 02270caa a2200313 ir4500
001 NSK01000709803
003 HR-ZaNSK
005 20110120113754.0
007 ta
008 090817s2008 ci ||| ||eng
035 |9 (HR-ZaNSK)712351 
035 |a (HR-ZaNSK)000709803 
040 |a HR-ZaNSK  |b hrv  |c HR-ZaNSK  |e ppiak 
042 |a croatica 
080 |a 004  |2 MRF 1998. 
080 |a 51  |2 MRF 1998. 
100 1 |a Mumtaz, Adeel 
245 1 0 |a Enhancing performance of image retrieval systems using dual tree complex wavelet transform and support vector machines /  |c Adeel Mumtaz, Syed Asif M. Gilani, Kamran Hameed and Tahir Jameel. 
300 |b Ilustr. 
504 |a Bibliografija: 20 jed 
520 |a This paper presents a novel image retrieval system (SVMBIR) based on dual tree complex wavelet transform (CWT) and support vector machines (SVM). We have shown that how one can improve the performance of image retrieval systems by assuming two attributes. Firstly, images that user needs through query image are similar to a group of images with same conception. Secondly, there exists non-linear relationship between feature vectors of different images and can be exploited very efficiently with the use of support vector machines. At first level, for low level feature extraction we have used dual tree complex wavelet transform because recently it is proven to be one of the best for both texture and color based features. At second level to extract semantic concepts, we grouped images of typical classes with the use of one against all support vector machines. We have also shown how one can use a correlation based distance metric for comparison of SVM distance vectors. The experimental results on standard texture and color datasets show that the proposed approach has superior retrieval performance over the existing linear feature combining techniques 
653 |a Slika  |a Obrada  |a Kompresija  |a Valne funkcije 
700 1 |a Gilani, Syed Asif Mahmood 
700 1 |a Hameed, Kamran 
700 1 |a Jameel, Tahir 
773 0 |t CIT. Journal of computing and information technology  |x 1330-1136  |g 16 (2008), 1 ; str. 57-68  |w nsk.(HR-ZaNSK)000018028 
981 |b B02/08 
998 |a luko090817  |c rpeo110120 
856 4 2 |u http://cit.zesoi.fer.hr/home.php  |y eCIT - Home page