An Introduction to Computational Learning Theory

Annotation

Permalink: http://skupnikatalog.nsk.hr/Record/fer.KOHA-OAI-FER:46929/Details
Matična publikacija: IEEE - MIT Press eBooks LIbrary
Vrsta građe: Knjiga
Jezik: eng
Impresum: Cambridge : MIT Press, Aug. 1994.
Online pristup: Full text available from IEEE - MIT Press eBooks LIbrary
LEADER 02641cam a22002892 b4500
005 20160712120015.0
008 940309e19940815riua s|||||||| 2|eng|d
020 |a 9780262111935 
024 3 |a 9780262111935 
040 |a BIP US  |d WaSeSS  |b hrv  |c HR-ZaFER  |e ppiak 
050 4 |a Q325.5.K44 1994 
082 0 0 |a 006.3  |2 20 
100 1 |a Kearns, Michael J.  |e Author  |9 37439 
210 1 0 |a An Introduction to Computational Learning Theory 
245 1 3 |a An Introduction to Computational Learning Theory / 
260 |a Cambridge :   |b MIT Press,  |c Aug. 1994. 
300 |a str.  
506 |a License restrictions may limit access. 
520 8 |a Annotation  |b Emphasizing issues of computational efficiency, Michael Kearns and Umesh Vazirani introduce a number of central topics in computational learning theory for researchers and students in artificial intelligence, neural networks, theoretical computer science, and statistics.Computational learning theory is a new and rapidly expanding area of research that examines formal models of induction with the goals of discovering the common methods underlying efficient learning algorithms and identifying the computational impediments to learning.Each topic in the book has been chosen to elucidate a general principle, which is explored in a precise formal setting. Intuition has been emphasized in the presentation to make the material accessible to the nontheoretician while still providing precise arguments for the specialist. This balance is the result of new proofs of established theorems, and new presentations of the standard proofs.The topics covered include the motivation, definitions, and fundamental results, both positive and negative, for the widely studied L. G. Valiant model of Probably Approximately Correct Learning; Occam's Razor, which formalizes a relationship between learning and data compression; the Vapnik-Chervonenkis dimension; the equivalence of weak and strong learning; efficient learning in the presence of noise by the method of statistical queries; relationships between learning and cryptography, and the resulting computational limitations on efficient learning; reducibility between learning problems; and algorithms for learning finite automata from active experimentation. 
521 |a Scholarly & Professional  |b MIT Press 
521 2 |a 17  |b MIT Press 
700 1 |a Vazirani, Umesh V.  |e Author  |9 37440 
773 0 |t IEEE - MIT Press eBooks LIbrary 
856 4 0 |u http://www.columbia.edu/cgi-bin/cul/resolve?clio10190358  |z Full text available from IEEE - MIT Press eBooks LIbrary 
910 |a Bowker Global Books in Print record 
942 |2 udc  |c K 
999 |c 46929  |d 46929