|
|
|
|
LEADER |
01815cam a2200325 a 4500 |
005 |
20130713153616.0 |
008 |
880809s1999 nyu b 001 0 eng d |
020 |
|
|
|a 0471359432
|
035 |
|
|
|a (OCoLC)42366577
|
035 |
|
|
|a (OCoLC)ocm42366577
|
035 |
|
|
|a (NNC)2387630
|
040 |
|
|
|a NNC
|c NNC
|d OrLoB-B
|b hrv
|e ppiak
|
050 |
|
4 |
|a QA402.5
|b .N453 1999
|
100 |
1 |
|
|a Nemhauser, George L.
|
245 |
1 |
0 |
|a Integer and combinatorial optimization /
|c George Nemhauser, Laurence Wolsey.
|
260 |
|
|
|a New York :
|b Wiley,
|c c1999.
|
300 |
|
|
|a xiv, 763 str. :
|b ilustr. ;
|c 26 cm.
|
490 |
1 |
|
|a Wiley-Interscience series in discrete mathematics and optimization
|
500 |
|
|
|a "A Wiley-Interscience publication."
|
500 |
|
|
|a Includes index.
|
504 |
|
|
|a Bibliography: p. 721-747.
|
505 |
0 |
0 |
|g Pt. I.
|t Foundations.
|g I.1.
|t The Scope of Integer and Combinatorial Optimization.
|g I.2.
|t Linear Programming.
|g I.3.
|t Graphs and Networks.
|g I.4.
|t Polyhedral Theory.
|g I.5.
|t Computational Complexity.
|g I.6.
|t Polynomial-Time Algorithms for Linear Programming.
|g I.7.
|t Integer Lattices --
|g Pt. II.
|t General Integer Programming.
|g II.1.
|t The Theory of Valid Inequalities.
|g II.2.
|t Strong Valid Inequalities and Facets for Structured Integer Programs.
|g II.3.
|t Duality and Relaxation.
|g II.4.
|t General Algorithms.
|g II.5.
|t Special-Purpose Algorithms.
|g II.6.
|t Applications of Special-Purpose Algorithms --
|g Pt. III.
|t Combinatorial Optimization.
|g III.1.
|t Integral Polyhedra.
|g III.2.
|t Matching.
|g III.3.
|t Matroid and Submodular Function Optimization.
|
650 |
|
0 |
|a Mathematical optimization.
|
650 |
|
0 |
|a Integer programming.
|
650 |
|
0 |
|a Combinatorial optimization.
|
700 |
1 |
|
|a Wolsey, Laurence A.
|
830 |
|
0 |
|a Wiley-Interscience series in discrete mathematics and optimization.
|
900 |
|
|
|a AUTH
|b TOC
|
942 |
|
|
|2 udc
|c K
|
999 |
|
|
|c 37711
|d 37711
|