The logic system of concept graphs with negation

Permalink: http://skupnikatalog.nsk.hr/Record/fer.KOHA-OAI-FER:34770/Details
Glavni autor: Dau, Frithjof (-)
Vrsta građe: Knjiga
Jezik: eng
Impresum: Berlin ; New York : Springer, c2003.
Nakladnička cjelina: Lecture notes in computer science ; 2892
Predmet:
Online pristup: Publisher description
LEADER 02457cam a22003134a 4500
005 20140605111107.0
008 031112s2003 gw a b 001 0 eng
010 |a  2003065504 
020 |a 3540206078 (acidfree paper) 
040 |a DLC  |c DLC  |d HR-ZaFER  |b hrv  |e ppiak 
042 |a pcc 
050 0 0 |a Q387.2  |b .D38 2003 
082 0 0 |a 003/.54  |2 22 
100 1 |a Dau, Frithjof. 
245 1 4 |a The logic system of concept graphs with negation :  |b and its relationship to predicate logic /  |c Frithjof Dau. 
260 |a Berlin ;  |a New York :  |b Springer,  |c c2003. 
300 |a xi, 213 p. :  |b ill. ;  |c 24 cm. 
440 0 |a Lecture notes in computer science ;  |v 2892 
504 |a Includes bibliographical references (p. [205]-209) and index. 
505 0 0 |t Start Introduction Short Introduction to Existential Graphs Short Introduction to Conceptual Graphs Problems with Conceptual Graphs Short Introduction to Concept Graphs with Cuts Outline of This Treatise Acknowledgements.  |t Basic Definitions Relational Graphs with Cuts Concept Graphs with Cuts.  |t Alpha Overview for Alpha Semantics for Nonexistential Concept Graphs Calculus for Nonexistential Concept Graphs Calculus Remarks Theorems and Normal Forms Soundness and Completeness Soundness Completeness Dependencies and Independencies.  |t Beta Overview for Beta First Order Logic Syntax Semantics Calculus.   |t Semantics for Existential Concept Graphs Contexual Semantics Syntactical Translations Semantical Equivalence.  |t Calculus for Existential Concept Graphs Calculus Derived Rules Soundness of the Calculus.  |t Syntactical Equivalence to FOL.   |t Summary of Beta Summary of Main Results Independency Results.  |t Concept Graphs without Cuts Concept Graphs without Cuts Standard Models and Semantical Entailment Standard Graphs Transformation-Rules for Models Conclusion.  |t Appendix Design Decisions Cuts Identity Links Dominating Nodes Peirce-Style Calculi.  |t References.  |t Index. 
650 0 |a Conceptual structures (Information theory) 
650 0 |a Knowledge representation (Information theory) 
650 0 |a Graph theory. 
650 0 |a Logic diagrams. 
856 4 2 |3 Publisher description  |u http://www.loc.gov/catdir/enhancements/fy0818/2003065504-d.html 
906 |a 7  |b cbc  |c orignew  |d 1  |e ocip  |f 20  |g y-gencatlg 
942 |2 udc  |c K 
955 |a pc22 2003-11-12 to ASCD  |c jf05 2003-11-13 to subj  |a jf04 2003-11-13 to jp00 (QA?)  |a aa01 2003-11-20  |a ps05 2004-04-19 1 copy rec'd., to CIP ver.  |a jp00 2004-04-22 
999 |c 34770  |d 34770